A matrix is in row echelon form if and only if

the first (leftmost) non-zero entry in each row is 1 (called the leading 1),

the leading 1 in each row (except row 1) is to the right of the leading 1 in the row above it, and all rows which contain only 0 are below all rows which contain any non-zero entry.

Are these matrices in REF? If not, why not?

Γ 1	3	0	-2	47	1	3	0	-2	4	[1	3	0	-2	47	[1	3	0	-2	47
0	1	. 7	4	0	0	1	7	4	0		0	1	7	0	0	ŀ	0	1	7	4	0
0	(-1	5	6	0	1	4	-3	-2		0	0	1	0	-2		0	0	0	1	-2
0	(0	1	3	0	0	1	1	3		0	0	0	1	3		0	0	0	0	0

Reduced Row Echelon Form (RREF)

A matrix is in reduced row echelon form if and only if

it is in row echelon form,

and all columns which contain a leading 1 contain only 0 in all other entries.

Are these matrices in REF? If not, why not?

ſ	1	0	-1	-2	4	<u> </u>	0	0	0	4	1	0	-3	0	47
	0	1	0	4	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	0	0	0	0	1	8	0	0
	0	0	1	5	6	0	0	1	0	-2	0	0	0	1	6
	0	0	0	0	0	0	0	0	1	3	0	0	0	0	0

Gaussian Elimination Pivot Method

Step 1: Find the first (leftmost) column which contains a non-zero entry

Step 2: Choose a pivot in that column (to be used to replace all lower entries in that column with 0)

Step 3: SWAP to move the pivot's row to the top

Step 4: SCALE to turn the pivot into 1

Step 5: REPLACE each row below the pivot's row

by adding the multiple of the pivot's row which gives a 0 under the pivot

Step 6: Cover up the pivot's row & repeat the entire process (stop when matrix is in row echelon form)

Gauss-Jordan Elimination (after matrix is in row echelon form)

Step 7: Find the last (rightmost) column which contains a pivot (leading 1)

Step 8: REPLACE each row above the pivot's row

by adding the multiple of the pivot's row which gives a 0 above the pivot

Step 9: Cover up the pivot's row & repeat the entire process (stop when matrix is in reduced row echelon form)

The following examples should not require fractions if solved using the processes above.

Example 1:

$$3x + 2y - z = -1$$

 $5x + y - 3z = -2$
 $2x + 4y + 2z = 2$

2x + 4y + 2z = 2

Example 2:

Example 5:

$$4x + 6y - 3z = -5$$

 $3x + 4y + z = 11$
 $-x - 2y + z = 1$

Example 3:

$$3x + 4y - 11z = -17$$

 $2x + y - 4z = 5$
 $-x - 2y + 5z = -9$

Example 4:

$$3x + 5y - 9z = 14$$

 $2x - 3y + 13z = 3$
 $-x + 2y - 8z = -1$

$$2x + 4y + 11z = 10$$

$$x + 2y + 7z = 5$$

$$3x + 4y + 9z = 13$$